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Wandering of a contact line at thermal equilibrium
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We reconsider the problem of the solid-liquid-vapor contact-line on a disordered substrate, in the collective
pinning regime. We perform a replica variational calculation which confirms the scaling behavior obtained
from Larkin-Imry-Ma-like arguments and provides a quantitative prediction for the correlation function of the
line. This prediction is in good agreement with experimental findings for the case of superfluid helium on a
caesium substrat€S1063-651X99)06307-2

PACS numbegps): 05.40—(q, 68.45-v

[. INTRODUCTION less than the correlation length of the disorder(range of
the impurities, while beyondé¢ the lateral fluctuations be-
When a liquid partially wets a solid, the liquid-vapor in- come larger tham and the line probes different impurities.
terface terminates on the solid, at the contact line. If the solid’he Larkin length scale diverges in the limit where the
surface is smooth, then at equilibrium we expect no distorstrength of disorder goes to zero. At zero temperature, the
tions of the contact line, and Young’s relatiph] giving the  line has a single equilibrium position when its length is
contact angle in terms of the interfacial tensions holds, that ismaller thané, while metastable states appear only for
lengths larger thag. Therefore, one can think of the contact
Ysv— ¥s1= ¥ COH Oeg) (1) line, qualitatively, as an object which is rigid on small length
scales(less thané) and fluctuates on larger length scales. A
wherey=1,, . third length scale, which is relevant for the discussion, is the
We consider a case where the substrate is weakly hetergapillary lengthL ., which is the length scale beyond which
geneous and where the heterogeneities are “wettable” deeffects due to gravity become important: the line then be-
fects, leading to a space dependence of the interfacial terromes “flat” in the sense that its fluctuations do not grow
sions y,, and y,. Favored configurations are those whereany longer with the distance.
the liquid can spread on a maximum number of defects. We The collective pinning of the contact line was first ad-
thus expect distortions of the contact line which tends to belressed by Vannimenus and Pomg&li They considered
pinned by the defects. Moreover, the energy due to théhe case of very weak disorder in which the Larkin length
liquid-vapor interface induces an elastic energy of the lineis larger than the capillary length. So their analysis only
The competition between the elastic energy and the pinningrobes the “Larkin regime” of length scales less th&rin
due to the disorder gives rise to a nontrivial wandering of thewhich there exist only very few metastable states. A more
line, a typical example of the general problem of manifoldscomplete qualitative picture, making clear the roleéptan
in random medigd?2,3]. The case of the contact line is of be obtained by some scaling arguments originally developed
special interest for several reasons. There exists by now goddr some related problems by LarkjB] and Imry-Ma[8].
experimental data for the correlations which characterize th&or the case of the contact line, these arguments were intro-
wandering of the ling4]. On the theoretical side, the prob- duced by Hus¢10] and developed by De Genngld and by
lem presents two specific features. The elasticity of the lineloanny and Robbin®]. They lead to interesting predictions
is due to the liquid-vapor interface and is therefore nonlocalconcerning the growth of lateral fluctuations of the line:
The pinning energy due to the surface heterogeneities is, ujnese should grow like the distance to the powen length
to a constant, a sum of local energy contributions due to thecales less thag and to the poweg on larger distances on
wetted defects. It has therefore nonlocal correlations whichength scales betweehandL .. More recently, Kardar and
are of the “random field” type in the usual nomenclature of Ertaz[11] have performed a dynamic renormalization group
manifolds in random media. calculation for the contact-line at zero temperature, subject to
In this paper we will consider the case of collective pin-a uniform pulling force, and also find a roughness exponent
ning where the strength of the individual pinning sites is3 . These scaling laws have been confirmed in recent experi-
small, but pinning occurs due to a collective effect. Thisments on the wetting of helium on a caesium substréte
seems to be the relevant situation for the experiments. Theonfirming the validity of the collective pinning picture in
case of strong pinning by individual impurities was studiedthis case.
by Joanny and De GenngS]. Collective pinning is a par- The aim of our paper is to go beyond the scaling analysis
ticularly interesting phenomenon since the balance betweeand provide a quantitative computation of the correlation
the elastic energy and the pinning one results in the existendenction of the line, on length scales smaller than We
of a special length scalg first discussed by Larkin in the use the replica method together with a Gaussian variational
context of vortex lines in superconductd®l. This Larkin  approximation, with replica symmetry breakih@2]. This
length is such that the lateral wandering of a line, thermali-approach, which is exact in the limit of large dimensions, has
zed at low temperatures, on length scales smaller ¢hasjs  been shown to predict the correct wandering exponents for a
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y abscte the x direction on scales of ordeY leads to a discretizedn
T contactline x) version of Eq.(4), which is equivalent to the form which
\\4%‘1 LT mena pesition we use(with a cutoff in smalix length scales, of ordeX). As

for the shape of the functio@(r), we shall first use

Reservoir

C(r)=f(r)y=exp(—r?/2). (5)

FIG. 1. Sketch of the experimental setup. ) )
We must also add to the random potential term a capillary

random field type of disorder, but not for one-dimensionalenergy term, which, if we neglect gravity and suppose that
random bond systenfd2]. Apart from the exponent itself, it the slope of the liquid-vapor interface varies smoothly, is
has been shown to give good quantitative results even fogiven by

zero-dimensional random field systerfis3—15. We will

show that this method, when applied to the contact line prob- E _c ﬂ‘ PIEIE ©®)
lem, confirms the scaling exponents derived before, but also A2 JomiL<|K<2mia2

provides the prefactor and a full description of the crossover

between the two regimes around the Larkin length. Note thafith c= y sir? fed2 [9], Oeq being the average equilibrium
in the case of random bond systems, the exponents given ntact angle. The final Hamiltonian is thus

the replica method are only approximate.

The paper is organized as follows. We introduce the C dk ) L
model in Sec. II. In Sec. Ill, we present for completeness a H= —J > |KI[P(K)| +f dxV(x,D(x)),
. ; \ 2 JomiL<|K=2m/a2T 0
scaling argument which gives the roughness exponents, and @

we obtain an expression for the Larkin length by a perturba-

tive approach. In Sec. IV, we present the replica calculation _ (00 .
and compute within a variational approximation the full cor- where V(x,®)=Jo “'dye(x,y). As a sum of independent

relation function in the limit of low temperatures. In Sec. V, ZGea;L(‘)SS:r‘]r(‘j Vl?r'a':g'e;ll(;}gzngs zfr bfi{?;rs&;nn (\j/sgatélﬁif?fwrge?gn
we compare our theoretical prediction with experimental ’ P y

data. choose
O-—P'\?
A
Consider a situation given by Fig. 1, where the liquid wets

an impure substrate which is slightly inclined with respect towheref(u) is a function which grows as/u] for large |u].
the horizontal. We denote bix,y) the space coordinates of Its precise form depends on the correlation functidaf the
the substrate. The excess energy per unit area due to pinnikgiergy per unit area, and is given in the simple q&sdy
is given by

lul
e0X,Y) = ¥5i(XY) ~ Y5y (%) = ¥5(X.Y) ~ v, (XY) () f(u)=|ul JO dve V- (1-e ). ©

resulting in a total pinning energy

Il. THE MODEL V(X,®)V(x', )= —WS(x—x")f

)

Note thatV is a long-ranged potential and fou|>1, f(u)
L D (x) _~ \/m
JO dxfo dye(x.y), 3) This model is probably a good model for the problem of a
contact line on a disordered substrate under the following
where ®(x) is the height of the the contact line at the ab- hypotheses.
scissax, andL is the width of the substrate. As for the pin- (i) The slope of the liquid-vapor interface is everywhere
ning energy per unit area or force per unit lengf,y), we  small. This allows us to expand the surface energy term
shall suppose that it is Gaussian distributed of mean zero/1+(V{)?, where( is the position of the liquid-vapor in-
which is the case if it results from a large number of micro-terface.
scopic interactions, and that it has local correlations on (ii) The length of the contact line is small compared with
length scales of ordek. Specifically, we choose the capillary length, so that one can neglect gravity. In the
geometry considered, the effective capillary length is given
by Vv/pg sina, whereq is the tilt angle of the substrate with
respect to to horizontdH].
(iii ) The defects in the substrate are weak and give rise to
where the correlation functio@(r) is normalized toC(0) collective pinning.
=1 andC"(0)=1/A?, and decreases fast enough to zero for

- W !
e(x,y)e(x',y")= p5(x—x’)c( %

) )

r>1. The asymmetry introduced in E@)) between the two IIl. PERTURBATION THEORY AND SCALING
directionsx andy is for computational convenience. In most
. . - TR . . ARGUMENTS
physical situations, the distribution of disorder should be iso-
tropic in the x-y plane, leading to a correlation in the For completeness we rederive in this section an expres-

direction on length scales of ordar We believe, however, sion for the Larkin length by perturbation theory, and review
that this correlation is irrelevant: coarse-graining the force irthe scaling derivation of the roughness exponents.
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A. The Larkin length IV. THE REPLICA COMPUTATION

On a sufficiently small length scale, we can assume that A. Computation of the free energy
the difference in heights between any two points is small
compared with the correlation lengthof the potential. We
can thus linearize the potential terrh6] such that
V(X,®(x))=V(x,0)—e(x)®(x). This leads to a random
force problem with a force correlation functia(x)e(x")
=(W/A?) 8(x—x"). Rewriting the Hamiltonian as

We now turn to a microscopic computation of the free
energyF=—TIn Z. Since the self-energy is a self-averaging
quantity, the typical free energy is equal to the averagg of
over the disorder. We compute it from the replica method
with an analytic continuation at", for n—0 [16]. Thenth
power of the partition function

H—C k‘d) ) 1 J dk |e(k)|? n c ¢ dk
_2 7 M| 200 C|'<| S2c)2m K Z”=f 11 d[cba]exp|—ﬁ—J—2 [K||®4(k)[?
(10) a=1 2 273G
L
we get forT—0 andA<|x—x'|<L _'8%: jo dXV(X,CDa(X))} (13

gives after averaging over the disorder

2W dk {1—cogk(x—x")
<[®(X)_®(X,)]2>=C2AZJ_{ S{kz ) n
11 drvaJexd - pHq[ ®a]} (14)

x| an
= 2pz XX
c°A where

Throughout the paper, we denote thermal averages by angu- H :EJ ﬂ(E K[| 4 (K)|2
lar brackets and the average over disorder by an overbar. The 2w a
linear approximation is no longer valid wheh®(x)

—®(x")| becomes of the ordek. Typically [x—x’| is then n ﬂVE
of orderé=c?A%/W, where¢ is the so-called Larkin length.

The critical exponent in the Larkin regime is given by

(‘IJa(X)—@b(X))2
f A

(15

We note that the expression of the free energy is invariant
_ with respect to a translation of the center of mass of the line
B. Roughness exponent for large fluctuations Dey= 1/Lf5dx<D(x) (1/L)®(k=0). We can fix the center

On length scales larger thanthe fluctuations of the line  of mass so that there is no integration on kive0 mode. The
are greater than the correlation lengthand perturbation partition functionZ" cannot be computed directly. Following
theory breaks down. One can estimate the wandering exp$12], we perform a variational calculation based on the varia-
nent by a simple scaling argument as folloj&2]. The tional Hamiltonian
Hamiltonian is given by Eq(7) and we can no longer lin-
earize the potential term in E7). 1

We consider the scale transformatior—Ix, ®(x) Ho= f Eabzl Pa(—k)Gap (K)Py(K), (16)
S1ED(x), VX, P(x))—I1V(x,P(x)). Imposing that the ‘
two terms in the Hamiltonian scale in the same way and thajyhereG 1! is a hierarchical Parisi matrix.
the potential term keeps the same statistics after rescaling, The variational free energy
we have

-1 1
A=2{-1 and 2A=-1+/( (12) 7=E|nzo+ﬁ<Hn_Ho>o (17)

and soz=1%. Note that this is less tha}) which is the value 9/VeS UP to a constant term,

of the exponent in the Larkin regime. This is not surprising _
) ; . }‘ 1/-1 ( dk
since on a still larger length scalarger than the capillary =lim = f —Tr,InG+ — f —|k|2 Gaa(k)
length we expect the line to be flat and=0. noo N 25 2p
This exponent can be recovered by the following
Imry-Ma argumenf1,8—10. On a scald., the line fluctuates E f( ) (18)
over a distanced. The elastic energy contribution then a#b ’

scales ag®?. As for the pinning energy, since it is a sum of

independent Gaussian variables, it scales\a&\ JL®/A%, ~ Where

where VWA is a measure of the pinning energy on an area q

A? andL®/A? is an order of magnitude of the number of YN f” U o 2 o

such pinning sites. Minimizing the total energy®d? f(2)= _x\/zwf(u e F=yltz=1 (19

— VWA JL®/AZ with respect tod®, we getd=A(L/&)Y3
with é~c?A4/W. and
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!

1 dk X—Xx' _
BabZEfE[Gaa(k)-Fbe(k)—ZGab(k)]. (20 A >1 and <1,
2
The optimal free energy is obtained for a mat@xwerifying , > X=X’ @7
the stationarity conditiongF/dG,,= 0, which read \/<[<I>(X)—CI>(X’)] Y=AH : )
—-2BW.. (B
Gable—'[jf’(A—a;) for a#b, where
4 x\?23 (= 1-cogk /o3 dw
(22) Hz(x):_(_) J dk[ 55{ )] f(x )
z G_l=C|k| 3\ 7 0 k 0 W§+l
5 ab .
N 2X Jw [1—cogk)] 28
More details on this approach can be foundi2,16,17. 37 Jo k(x/7+Kk)

and é=c?A%/W.
The function’H has the following asymptotic behavior.

To solve Egs(21), we suppose that the matr@ has a g, smallx, H(x)= x| and for largex, H(x)=1.14x| 2
hierarchical replica symmetry breaking structure in the man- When|x—x'|<¢

ner of Parisi. We can writ& ;= (C|k| = &) 8ap— 0ap. G *

B. The replica symmetry breaking solution

is thus parametrized by a diagonal peit|—, and a func- ' = x—x'|?
tion o(u) defined on the intervdl,1]. [From Egs.(21), we V([P () - D(x')])=A : (29)
know that the off-diagonal elements 6 * do not depend
on k.] The optimization equations fd& can then be written When|x—x'|>¢,
as
\/ X—X' 1/3
2BW.. [B(u) D(x)—D(x')]H)=1.14A|— 30
U(u):Af(A) 22 ([P0 = D(x)1?) ; (30
with C. A more general form of the disorder

2 ¢ dk We can show that even in the more general case where we
B(u)= _f Z_[Q(k)_g(k,u)], (23 only impose t'hat the (?orrelation function of the potenFiaI has
BJ 2m the asymptotic behavidi(|u|) ~ ]ul for large|u], the height

The solution to these equations is described in Appendix Af:orrelatlon function can be put in the form

It is best written in terms of the function

‘ X=X’
V@00 —0x)17) =40 — (3D
in the limit T— 0, and forA <|x—x’|<L. The derivation of

G is given in Appendix BG depends on a functioln, where
the inverse oh is given byh~1(x)=f"(x)/f"(x).

[0](u)=ug(u)—f0udva(v) (24
which is given by

D. Effect of the cutoff A

On scales comparable tb, there are corrections to Eq.
(25) (28). When we take into account the cutdff 7 is replaced

by

W u 3/2
[U](U)ZWCA4(U_C) for u=u,

w
[o](u)= —oAd for u=ug,

5 \ _4 x |23 r2mx dk 1 ‘ (x/ k)13 dw
with Hi(X, )—§ p . k—sm[ cogk)] . v
2X [ 2mAx dk
3T T +—f —————[1-cogKk)], 32
UCZWCTZ=T—C- 37 Jo k(X/71'+k)[ ] (32

wherehx=¢/A. The effect of the cutoff is to shift the theo-
retical curve slightly downwards, especially in the region of
small x.

The expression fou, is given byT/T, for T small compared
with T.. From the expression

1 tdu  [o](u) .
Gaa(k)= oIkl o UZ [o](0) F oK (26) E. Effect of gravity

To take into account gravity, we must replace the kernel
we get forT—0, K| in the Hamiltonian(7) by Vk%+ x?, with w=1/L,, where
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L. is the capillary length. Generalizing the previous calcula-As for u/, it is slightly larger thanu. and also of order
tions, we can expregsr](u) in terms of an inverse function T/T.. A more detailed description is provided in Appendix
Z ' When the Larkin length is sufficiently small compared C. When the capillary length goes to infinity, tends to-
with the capillary length, we have in the limit whefe<T, wards 0 andu/ towardsu,. The functionZ(x) is given by

[o](u)=0 for u=uq, -3/2

= dk 2 = dk
I(X): J 2 2 ZJ' 2 3
Lo [u)®? , 0 (Vg*+1+x) 0 (Vg7+1+x)
[o](u)=pucZT E\ T for uysu=u}, (33 (34)
Cc
. N\ 32 and for largex, Z(x)=x. This asymptotic behavior ensures
u
_ 1| Fe [ He / that we do recover the results of Sec. V whegoes to zero.
Lo](w)=peT wg(uc) for u=uc, The correlation is then given by
with F > x—x" wé&
y ] V([@(x)— (X)) =AH, L)
o C
u;=u —I(O)) and u.=—.
! c( Lc ¢ Tc where

1—cogkxX/m) ((uljuy¥2dw AT Hwi/N)
VN2 Jpmon3 WP\ w3/ + VKEF A2
2 U fw 1—cog kx/) NZ (1)

-—1d .
0 VK2+N2 N HAM) + K2+ N2

H? A—4fmdk
g(xv )_3 0

+ 3y (36)

c

The asymptotic behavior df(, is different from that of/. ments are carried out on a range of temperatures going from

For smallx, abou 1 K to 2 K. There is a constant inflow of helium at the
bottom of the helium reservoir to maintain the contact angle
Hz(x,)\)zx[z fwéfuc)m Wisfl(WS/)\) to its maximum valued,, the advancing angle, which is in
9 3 /o W general different from the equilibrium contact anglg, (see

Fig. 1). This is necessary because otherwise the liquid would

+ u_(:,)\zl(lh\)] (37)  recede and the contact angle would shrink to zero due to
3uc strong hysteresis. Height correlations are calculated from
~snapshots of the advancing line when it is pinned. The in-

and for largex, Hy(x,\) tends towards a constant dependingcoming helium is regulated to ensure that the line moves
on A. _ _ _ with a small velocity and so we can probably suppose that
. F_ro_m the previous equations we can see that gravity has‘\7’?}9 are just at the limit of depinning each time the line is
significant effect whenr¢/L becomes of order 1, whegs pinned. While the experiments thus involve a line which is

We can also note thatihe correston for small the case. M0VINd VerY slowly, our thery is a static theory which as-
. o 3 _— : ) sumes equilibrium. It is not clear priori that it can apply to
without gravity is of ordei ~*. The limit A going to O is thus . L )
the experimental situation, but as we shall see, the quality of
a rather slow one. ] o
the agreementtogether with the lack of more quantitative
theoretical results on out-of-equilibrium dynamigsstifies
it a posteriori The predicted order of magnitude Bf given
A. The experimental setup by Eq.(25) is cA?= y sin’(fe) A?/2. The size of the impuri-
We have fitted the data from experiments carried out b)}les can be measured experlmen.tally and is of the order.of 20
Guthmann and Rolley4] with our theoretical curve. The ~M- We thus expect the correlation length to be a few times
experiments study the wetting properties of liquid helium this size. For teomperaturesgnot Echo clpse to transition tem-
on caesium below the wetting transition temperature whicHP€rature feq~20° andy~ 10" Km = This leads to a typical
is about 2 K. Above that temperature, caesium is wetted bgstimateTc~10°K, in the exp%rlmental conditions ¢#].
helium. In the experiments carried out by Guthmann andrherefore,T/T is of order 10~ and the system is effec-
Rolley, the substrate consists of caesium deposited on a goltyely at low temperatures, justifying the low-temperature
mirror which is slightly inclined with respect to the horizon- limit in our computations. This effect is due to the fact that
tal (see Fig. 1L The wetted defects are small areas on thethe defects have a range of at most a hundred micrometers:
substrate where the caesium has been oxydized. The expetiis had been already pointed out[ir.

V. COMPARISON WITH EXPERIMENT
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400 t

H(x)

200  J

Height correlation in micrometers

0.0 : : ; 00 . , .
0.0 100 200 “0.0 500.0 1000.0 1500.0

Transverse distance in micrometers

FIG. 2. We rescale the experimental curves on the theoretical FIG. 3. We have rescaled the theoretical cutyén the absence
curve’H for the case without gravity. The circles represent the datadf gravity on the experimental curves by the same amauint the
for the temperaturél=1.93K, the diamondsr=1.9K, the tri- Yy direction and by different amountsin the x direction. On thex
anglesT=1.8K, and the squareb=1.72 K. axis, we have represented the distancgrimbetween two points on
the line, and on the axis the average height difference between
B. Comparison between experimental data and the theory for them. The circles represent the experimental data. From top to bot-
a Gaussian correlation function of the disorder tom, we go from 1.93 K, to 1.9 K, 1.8 K, and to 1.72 K.

We consider experimental data for height correlatighs The dependence dfon the temperature is related to the
for temperatured =1.72, 1.8, 1.9, and 1.93 K. The equilib- variations of W, y, and 6., which are not known well
rium angle 6, the liquid-vapor interfacial tensioy, and  enough for a detailed comparison. In Fig. 3, we note that
the “potent|al strength”W depend on the temperature, and each of the rescaled experimental curve departs from the
so the various experimental curves correspangriori 0 theoretical curve after some time. Moreover, we note that the
different values of the Larkin Iength. Instead, the COI’re'atlongenera| tendency is that the experimenta| curves have a
length A which depends only on the substrate is expected t@|ightly larger curvature than the rescaled theoretical curve.
remain constant. We have thus fitted the eXperlmental CUrvVeBhijs is an indication that grav|ty could indeed p|ay a S|gn|f|-
to the theoretical predictiof27) and (35), with the samed  cant part. Indeed, the effective capillary length in the experi-

but different&’s. . . ~_ mental conditions is of the order 2 mm, and experimentally
'We proceed as follows. Neglecting gravity, we first mini- the correlations are measured for distances up to about 1.5
mize the error function mm, which is actually not small compared with the capillary
4 N length.
e 72 To check whether gravity does or does not have a signifi-
E Z’l .21 [AHi1€) = Hexd x3)] (38) cant effect, we have recommenced the previous steps with
[

Hgy instead ofH. The capillary length. . can be calculated
for the different temperatures from the experimental mea-

with respect toA and & for je[1,4], wherej denotes a surements ofy. We now minimize the error function
given experimental curve at the temperatliie x; are the

experimental pointsN; is the number of points of curve - 2
and§; is the correlation length at temperatufrg. This pro- E =1
cedure yieldsA=18um. In Fig. 2, we fit each experimental ]
curve on the theoretical curvd. We rescale each experi- (40
mental curve by the correspondingt 1rh the x direction and i _ _

by 1/A in the y direction. In the table below, we give the We find very different values for the parameters. In this case,

values of¢; and the ratios;/&;, whereg; is the correlation A=75um. In the table below, we indicate the values of the
length at the highest temperature, foe=18xm. In Fig. 3, capillary lengths and Larkin lengths for the different tem-
we rescale the theoretical curve on each of the experiment®€ratures,
curves by the correspondorggn the x direction and byA in T (K)
they direction. The axes are inpm.

[AHG(Xi /&, 7 ILL) = Herd(X) 12

I M_z

172 1.8 1.9 1.93
Lo (um) 1855 1838 1819 1823
T (K) 1.72 1.8 1.9 1.93 & (um) = 477 422 362 295. (41)

§ (upm) = 220 145 92 53 In Fig. 4, we fit the experimental curves on the correspond-
&g = 41 27 17 1 (39 ing theoretical curveHy(x,\). The fit is clearly better at

0
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400 +
APPENDIX A: COMPUTATION
OF THE FUNCTION [o](u)

We give in this appendix some details of the calculation

200 7 of the function[ o](u). We have from Sec. IV

Height correlation in micrometers

2,8WA, B(u)
O'(U): AZ f ( AZ )! (Al)
0.0 : . \ where
0.0 500.0 1000.0 1500.0
Transverse distance in micrometers 2 dk ~
FIG. 4. We rescale the theoretical cur#, on the different B(u)= Ef E[g(k)—g(k,u)] (A2)

experimental curves. The axes are the same as for Fig. 3. The upper
curve corresponds to the highest temperature and the lowest curand from[12]

to the lowest temperature.
_ 1 ldv 1
g(k)—g(k,u)= J

largex in this case since we have gotten rid of the systematic uLclkl+Lalw] Ju v clkl+[o](v)

drift from the theory for large fluctuations. (A3)
Since gravity is present in the experiment, it must be i”'Differentiating Eq.(Al) gives

cluded in the analysis. What we find is that, as the length

scales which are probed become comparable to the capillary , 2pW . [B(u)

length, the inclusion of gravity in the analysis modifies quite o'(u)=—z B (Wf (T) (A4)

a bit the results of the fit. It is not so surprising that the

theory without gravity could give a reasonable fit since itand replacingd’(u) in Eq. (A4) by its expression

predicted the exponents correctly, but it gave a poor result

for the Larkin length. In general, the correlation length will B'(u)=— 2 o' (A5)
depend quite a lot on the precise form of the disorder, but pmc [a](u)
one can expect it to be a few times the size of the impuritiesl,eads to
so that our resulA=75um is indeed compatible with the
estimated impurity size in the experiment. A better experi- a'(u)=0 (AB6)
mental control of the type and size of the impurities would
be needed in order to really check this point. or
1 4W 1 AH( B(u))
== 3 2
VI. DISCUSSION AND PERSPECTIVES mCA" [a](u) | A

This model for the pinning of a contact line on a disor- We expressB(u)/A? in terms of[o](u) by inverting the
dered substrate fits quite well the experimental data but therg@cond equation of Eq&A6). This gives
are nevertheless a few points that still need to be cleared. For CA4 B(u)
instance, we have supposed that the line is in thermal equi- fﬂl( T [a](u)) =—>. (A7)
librium in order to write the usual partition function, and at 4w A
the end of the calculation we have taken the temperature tBifferentiating Eq.(A7), and using expressiofAd) to ex-
be zero since, as we can see from the numerical values of t tessB’(u), and t.he fa'Ct thato]’ (U)=uc' (u), we get
parameters, the problem is actually a zero-temperature prob- ' '

lem. However, in doing so we retain only the states with the S 2

: : [ B(u) BarcA 3T,
lowest energy. Experimentally the correlations are not mea- — =_ u=——u, (A8)
sured for the ground state of the line but for any state that AW 2 2T

can be reached dynamically by the experimental procedure.

These states could be metastable stable, which does not naghere

essarily have the same statistical properties as the ground

state. But as we have seen from the third fit, the fluctuations tx)= 1 (A9)
of the line do not go beyond the correlation length. So even 2J1+x

though we are out of the Larkin regime, the fluctuations are

still relatively small and this is perhaps an effect of gravity. From Egs.(A8) and (A9), we have
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B(u)
AT T

T.u

+-;;EIE§§:: —'1'+ (/\1(»

Multiplying both sides of Eq.(A5) by u, and using Eq.
(A10), we get after integrating ovaer,

[o](u)=Au%?. (A11)

The breakpointi., above which the solutions to Eq#10)
and(All) are no longer valid, is given by

14 27C )
Alo](ue) )
(A12)

WhenT/T. goes to Ou.=T/T.. Now sinceB(u) tends to
infinity when u tends to 0, we haver(0)=0. Foru=u,,
B(u)=B(u;) and[o](u)=[c](u;). To obtain A, we can
differentiate Eq.(A12) and compare the result with the ex-
pression fora’ (u). We find A= (W/mwcA*) (1u?). Foru
=u., o' (u)=0 and sd o ](u)=[o](us) =W/ mcA*.

B(uc)= A?

T2t
Tous) 37"

APPENDIX B: GENERAL FORM OF THE CORRELATION
FUNCTION FOR ARBITRARY DISORDER

In this appendix we derive the height correlation function

for a more general form of the functidnhappearing in the
correlation function of the disord€8). We only impose that
f(lu])~\|u[ for large u, where\ is some constant, such

that f(u)~\Jul. We shall keep the same notations as in

Appendix A. In this more general case, E¢&1), (A5), and
(A8) from Appendix A are still valid. We define the function
h~1 for positivex as

fm(x)
%H(X),

h™t(x)= (B1)

whereh™1(x) ~ — 3/2x for largex. The asymptotic behavior
of h(y) for small and negativg is then —3/2y. We now
expressB(u) in terms ofh, from Egs.(A8) and (B1). This
gives

B(u)=A%h - T4 B2
()= — 7 U/ (B2)
Differentiating the previous equatidiB2) gives

B/ B 7TCA4h, mCA? B3

(W==—3 | ~—u (B3

which can be rewritten as

2T d

— —logo](u)=wh'(—w) (B4)

3T. du

wherew= (7cA?/2T)u. Integrating Eq(B4) gives
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3u/2u,
[a](u)=[a](e)exp s dwwh'(—w).

(B5)

For esu<u,., we can use the asymptotic form bfin Eq.
(B5), which then reads

u 3/2
[UJ(U)=[U](E)(;) : (B6)

Now for smallu, Eq. (A4) becomes in this case

(B7)

and so for smalli, since[ o](0)=0, we get

W u 3/2
wcA“(u_c) '

A comparison of this last expression with E§6) gives

[o](u)= (B8)

3/2
[a](e)= 7TCA4<U_C) . (B9)

Replacing this last expression in E@5) and takinge to
zero leads to

w
[o](u)=— S, (B10)
where
u 312 3u/2ug 3
S(u)=(u—c) epro dww(h’(—w)—ﬁ).
(B11)

For the sake of simplicity, we will suppose that in this case
the break-point up to which expressi@l1) is valid, is also

Uc in the limit of low temperatures. This implicitly requires
thath(—3/2)=0. Then foru=u,,

312 3
S(u)ZS(uC)zeprO dww( h'(—w)— W)
(B12

Whenf’ has the simple forntA9), h’ (—w) = 3/2w?, and we
recover the expression p&](u) derived in Appendix A. In
the limit of low temperatures and fak <|x—x’|<L, the
height correlation function is given by

x—x’)
£

\/<[<I>(X)—<I>(X’)]2>=Ag( (B13)

with
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4 x\?Rr= [1-cogk k) L3 1
gZ(X):_(_) f dk[ 5“d( )] J(X ) dV
3\m 0 k 0 3 3v2/2(mkix)23 , 3
ve+exp —fo dwh(—w)—ﬁ
2X [ 1—-cogqk
+§fdk [1-cosk)] _— 614
° K xmtkexg —fg’zdw(h'(—w)—m) ]

APPENDIX C: EFFECT OF GRAVITY FOR GIVEN
DISORDER

In this appendix, we consider a specific case of the disor-

der given by Eqs(8) and(9). To take into account gravity,
we must replace the kerngk| by [k|Z+u?, with u
=1/L., whereL. is the capillary length. The equations de-
rived in Appendix A are thus no longer valid. ¢f' (u) is not
zero, then Eq(A7) of Appendix A becomes

B(u ., ,[ mcA?
?—f Y K(al(w)], (Cy
where
X
K(X)=Cug(a) (C2
with
1 Jw dk ©3
ax)  Jo (VKZ+1+x)?
Differentiating Eq.(A2) gives
20'(u) 1
B'(u)=-— (Cq

mBc K([o](u))’
Differentiating Eq.(C1), and using Egs(A4) and (A9), we
have
B(uy T 1
TR T T Uk el

(CH

Differentiating the previous expressid@5), and using Eq.
(C4) we can expresgo](u) as

K(ol(u)

T ooy A €8

To expresg o], it is convenient to introduce the functidn

9(x)
NG

(C9Y
which is strictly positive and increasing(0)=0.87 and
Z(x) goes asx whenx goes to infinity.

The inverse functior ! is thus defined on the interval
[Z(0),2]. Since[o](u) must be continuous anflo](0)
=0, the function[o] necessarily has a first plateau where
[o](u)=0 fromu=0 up to a valuau, given by

u

312
U™ _Le (U
Ue m&\ U

312
) . (C10

1
I(O): ’7TCA4 R(

For u;<u=<u/, whereu/ is the new break point to be de-
termined,
L u 3/2
- Y Bl
e {512

The break-poinu is obtained using EqgC5) and (A2) is
given by

(C1D)

where A is a constant to be determined. Replacing in Eq.

(A4) B'(u) by its expressioC4) and using Eq(A9) and
Eq. (C5) leads to

W1 (UK ([o](w)*?
SR AT S (PaTIT)

Comparing the previous expression with EG6) gives

(C7)

w 1

A= —— —p. (@)
mcA? ug 2

B(ué)_ 1
A7 T N ol
2 dk
=3 Uc 7 (ClZ)
3
f( KT+ [U](uc))
“ uc
and whenT goes to zero
[o](ug)
uc=ué/c'([o]<ué>)=ugg'(oﬂ—c), (€13
where
L (= dg = dq ’
=2 foqu—+1+u>2> '
(C14

Sinceg’ is a strictly increasing function, witg’(0)= 8/
and g'(«)=1, in the limit of low temperaturesi;<u/
<u./g’(0). SinceZ(x) is almost linear, we can suppose that
[o](ul)=WImcA*(ul/u)®? and so Eq.(C13 can be re-
written as
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in the absence of gravity. We can then solve numerically for

pﬁ,292/39'(9) (C19 0 and foru.. For our experimental data, we get by this
methodu,=u,. Foru=u/, [o](u)=[c](ul). The height
with correlation function is then given by
1[ug)* mé :
Q=== — > 1 - x—x" mé
)x(uc) and Lc (C18 V([ (x)— D(x )]2>:AHg(—§ L_) (C17
Cc

We can solve fou perturbatively using the solution without
gravity. As a first approximation, we can take foits value  where

0 4J'°°dk[1—cos{kx/7-r)] ao¥e dw NI H(W3/N)
X, = — —_— —_—
g 3Jo Vk?+ 22 DZOBW? \T-H(W3/N) + K2+ A2

[1—cogkx/)] AREY)Y)

VCENZ AT YA + KkEea?

2 o
+§(m)*2’3f dk (C18
0
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