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Wandering of a contact line at thermal equilibrium

Anusha Hazareesing and Marc Me´zard
Laboratoire de Physique The´orique de l’Ecole Normale Supe´rieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

~Received 8 July 1998!

We reconsider the problem of the solid-liquid-vapor contact-line on a disordered substrate, in the collective
pinning regime. We perform a replica variational calculation which confirms the scaling behavior obtained
from Larkin-Imry-Ma-like arguments and provides a quantitative prediction for the correlation function of the
line. This prediction is in good agreement with experimental findings for the case of superfluid helium on a
caesium substrate.@S1063-651X~99!06307-2#

PACS number~s!: 05.40.2q, 68.45.2v
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I. INTRODUCTION

When a liquid partially wets a solid, the liquid-vapor in
terface terminates on the solid, at the contact line. If the s
surface is smooth, then at equilibrium we expect no dis
tions of the contact line, and Young’s relation@1# giving the
contact angle in terms of the interfacial tensions holds, tha

gsv2gsl5g cos~ueq!, ~1!

whereg5g lv .
We consider a case where the substrate is weakly he

geneous and where the heterogeneities are ‘‘wettable’’
fects, leading to a space dependence of the interfacial
sionsgsv and gsl . Favored configurations are those whe
the liquid can spread on a maximum number of defects.
thus expect distortions of the contact line which tends to
pinned by the defects. Moreover, the energy due to
liquid-vapor interface induces an elastic energy of the li
The competition between the elastic energy and the pinn
due to the disorder gives rise to a nontrivial wandering of
line, a typical example of the general problem of manifo
in random media@2,3#. The case of the contact line is o
special interest for several reasons. There exists by now g
experimental data for the correlations which characterize
wandering of the line@4#. On the theoretical side, the prob
lem presents two specific features. The elasticity of the
is due to the liquid-vapor interface and is therefore nonloc
The pinning energy due to the surface heterogeneities is
to a constant, a sum of local energy contributions due to
wetted defects. It has therefore nonlocal correlations wh
are of the ‘‘random field’’ type in the usual nomenclature
manifolds in random media.

In this paper we will consider the case of collective p
ning where the strength of the individual pinning sites
small, but pinning occurs due to a collective effect. Th
seems to be the relevant situation for the experiments.
case of strong pinning by individual impurities was studi
by Joanny and De Gennes@5#. Collective pinning is a par-
ticularly interesting phenomenon since the balance betw
the elastic energy and the pinning one results in the existe
of a special length scalej, first discussed by Larkin in the
context of vortex lines in superconductors@6#. This Larkin
length is such that the lateral wandering of a line, therm
zed at low temperatures, on length scales smaller thanj, is
PRE 601063-651X/99/60~2!/1269~10!/$15.00
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less than the correlation lengthD of the disorder~range of
the impurities!, while beyondj the lateral fluctuations be
come larger thanD and the line probes different impurities
The Larkin length scale diverges in the limit where t
strength of disorder goes to zero. At zero temperature,
line has a single equilibrium position when its length
smaller thanj, while metastable states appear only f
lengths larger thanj. Therefore, one can think of the conta
line, qualitatively, as an object which is rigid on small leng
scales~less thanj! and fluctuates on larger length scales.
third length scale, which is relevant for the discussion, is
capillary lengthLc , which is the length scale beyond whic
effects due to gravity become important: the line then
comes ‘‘flat’’ in the sense that its fluctuations do not gro
any longer with the distance.

The collective pinning of the contact line was first a
dressed by Vannimenus and Pomeau@7#. They considered
the case of very weak disorder in which the Larkin lengthj
is larger than the capillary length. So their analysis on
probes the ‘‘Larkin regime’’ of length scales less thanj, in
which there exist only very few metastable states. A m
complete qualitative picture, making clear the role ofj, can
be obtained by some scaling arguments originally develo
for some related problems by Larkin@6# and Imry-Ma @8#.
For the case of the contact line, these arguments were in
duced by Huse@10# and developed by De Gennes@1# and by
Joanny and Robbins@9#. They lead to interesting prediction
concerning the growth of lateral fluctuations of the lin
these should grow like the distance to the power1

2 on length
scales less thanj, and to the power13 on larger distances on
length scales betweenj andLc . More recently, Kardar and
Ertaz@11# have performed a dynamic renormalization gro
calculation for the contact-line at zero temperature, subjec
a uniform pulling force, and also find a roughness expon
1
3 . These scaling laws have been confirmed in recent exp
ments on the wetting of helium on a caesium substrate@4#,
confirming the validity of the collective pinning picture i
this case.

The aim of our paper is to go beyond the scaling analy
and provide a quantitative computation of the correlat
function of the line, on length scales smaller thanLc . We
use the replica method together with a Gaussian variatio
approximation, with replica symmetry breaking@12#. This
approach, which is exact in the limit of large dimensions, h
been shown to predict the correct wandering exponents f
1269 © 1999 The American Physical Society
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1270 PRE 60ANUSHA HAZAREESING AND MARC MÉZARD
random field type of disorder, but not for one-dimension
random bond systems@12#. Apart from the exponent itself, i
has been shown to give good quantitative results even
zero-dimensional random field systems@13–15#. We will
show that this method, when applied to the contact line pr
lem, confirms the scaling exponents derived before, but
provides the prefactor and a full description of the crosso
between the two regimes around the Larkin length. Note
in the case of random bond systems, the exponents give
the replica method are only approximate.

The paper is organized as follows. We introduce
model in Sec. II. In Sec. III, we present for completenes
scaling argument which gives the roughness exponents,
we obtain an expression for the Larkin length by a pertur
tive approach. In Sec. IV, we present the replica calculat
and compute within a variational approximation the full co
relation function in the limit of low temperatures. In Sec.
we compare our theoretical prediction with experimen
data.

II. THE MODEL

Consider a situation given by Fig. 1, where the liquid w
an impure substrate which is slightly inclined with respect
the horizontal. We denote by~x,y! the space coordinates o
the substrate. The excess energy per unit area due to pin
is given by

e~x,y!5gsl~x,y!2gsv~x,y!2gsl~x,y!2gsv~x,y! ~2!

resulting in a total pinning energy

E
0

L

dxE
0

F~x!

dye~x,y!, ~3!

whereF(x) is the height of the the contact line at the a
scissax, andL is the width of the substrate. As for the pin
ning energy per unit area or force per unit lengthe(x,y), we
shall suppose that it is Gaussian distributed of mean z
which is the case if it results from a large number of mic
scopic interactions, and that it has local correlations
length scales of orderD. Specifically, we choose

e~x,y!e~x8,y8!5
W

D2 d~x2x8!CS Uy2y8

D U D , ~4!

where the correlation functionC(r ) is normalized toC(0)
51 andC9(0)51/D2, and decreases fast enough to zero
r @1. The asymmetry introduced in Eq.~4! between the two
directionsx andy is for computational convenience. In mo
physical situations, the distribution of disorder should be i
tropic in the x-y plane, leading to a correlation in thex
direction on length scales of orderD. We believe, however
that this correlation is irrelevant: coarse-graining the force

FIG. 1. Sketch of the experimental setup.
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thex direction on scales of orderD leads to a discretized~in
x! version of Eq.~4!, which is equivalent to the form which
we use~with a cutoff in smallx length scales, of orderD!. As
for the shape of the functionC(r ), we shall first use

C~r !5 f ~r !5exp~2r 2/2!. ~5!

We must also add to the random potential term a capill
energy term, which, if we neglect gravity and suppose t
the slope of the liquid-vapor interface varies smoothly,
given by

Ecap5
c

2 E2p/L<uku<2p/D

dk

2p
ukuuF~k!u2 ~6!

with c5g sin2 ueq/2 @9#, ueq being the average equilibrium
contact angle. The final Hamiltonian is thus

H5
c

2 E2p/L<uku<2p/D

dk

2p
ukuuF~k!u21E

0

L

dxV„x,F~x!…,

~7!

where V(x,F)5*0
F(x)dye(x,y). As a sum of independen

Gaussian variables,V(x,F) is a Gaussian variable of mea
zero, and up to a uniform arbitrary random shift we c
choose

V~x,F!V~x8,F8!52Wd~x2x8! f S S F2F8

D D 2D , ~8!

where f (u) is a function which grows asAuuu for large uuu.
Its precise form depends on the correlation functionC of the
energy per unit area, and is given in the simple case~5! by

f ~u2!5uuu E
0

uuu
dve2v2/22~12e2u2/2!. ~9!

Note thatV is a long-ranged potential and foruuu@1, f (u)
;Auuu.

This model is probably a good model for the problem o
contact line on a disordered substrate under the follow
hypotheses.

~i! The slope of the liquid-vapor interface is everywhe
small. This allows us to expand the surface energy te
A11(¹z)2, wherez is the position of the liquid-vapor in-
terface.

~ii ! The length of the contact line is small compared w
the capillary length, so that one can neglect gravity. In
geometry considered, the effective capillary length is giv
by Ag/rg sina, wherea is the tilt angle of the substrate wit
respect to to horizontal@4#.

~iii ! The defects in the substrate are weak and give ris
collective pinning.

III. PERTURBATION THEORY AND SCALING
ARGUMENTS

For completeness we rederive in this section an exp
sion for the Larkin length by perturbation theory, and revie
the scaling derivation of the roughness exponents.
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PRE 60 1271WANDERING OF A CONTACT LINE AT THERMAL . . .
A. The Larkin length

On a sufficiently small length scale, we can assume
the difference in heights between any two points is sm
compared with the correlation lengthD of the potential. We
can thus linearize the potential term@6# such that
V„x,F(x)….V(x,0)2e(x)F(x). This leads to a random
force problem with a force correlation functione(x)e(x8)
5(W/D2)d(x2x8). Rewriting the Hamiltonian as

H5
c

2 E dk

2p
ukuUF~k!2

e~k!

cuku U
2

2
1

2c E dk

2p

ue~k!u2

uku
,

~10!

we get forT˜0 andD!ux2x8u!L

^@F~x!2F~x8!#2&5
2W

c2D2 E dk

2p

$12cos@k~x2x8!#%

k2

5
W

c2D2 ux2x8u. ~11!

Throughout the paper, we denote thermal averages by a
lar brackets and the average over disorder by an overbar.
linear approximation is no longer valid whenuF(x)
2F(x8)u becomes of the orderD. Typically ux2x8u is then
of orderj5c2D4/W, wherej is the so-called Larkin length
The critical exponent in the Larkin regime is given by1

2.

B. Roughness exponent for large fluctuations

On length scales larger thanj, the fluctuations of the line
are greater than the correlation lengthD and perturbation
theory breaks down. One can estimate the wandering e
nent by a simple scaling argument as follows@12#. The
Hamiltonian is given by Eq.~7! and we can no longer lin
earize the potential term in Eq.~7!.

We consider the scale transformation,x˜ lx, F(x)
˜ l zF(x), V„x,F(x)…˜ l lV„x,F(x)…. Imposing that the
two terms in the Hamiltonian scale in the same way and
the potential term keeps the same statistics after resca
we have

l52z21 and 2l5211z ~12!

and soz5 1
3 . Note that this is less than12, which is the value

of the exponent in the Larkin regime. This is not surprisi
since on a still larger length scale~larger than the capillary
length! we expect the line to be flat andz50.

This exponent can be recovered by the followi
Imry-Ma argument@1,8–10#. On a scaleL, the line fluctuates
over a distanceF. The elastic energy contribution the
scales ascF2. As for the pinning energy, since it is a sum
independent Gaussian variables, it scales asAWDALF/D2,
whereAWD is a measure of the pinning energy on an a
D2 and LF/D2 is an order of magnitude of the number
such pinning sites. Minimizing the total energycF2

2AWDALF/D2 with respect toF, we get F.D(L/j)1/3

with j;c2D4/W.
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IV. THE REPLICA COMPUTATION

A. Computation of the free energy

We now turn to a microscopic computation of the fr
energyF52T ln Z. Since the self-energy is a self-averagin
quantity, the typical free energy is equal to the average oF
over the disorder. We compute it from the replica meth
with an analytic continuation ofZn, for n˜0 @16#. Thenth
power of the partition function

Zn5E )
a51

n

d@Fa#expH 2
bc

2 E dk

2p (
a

ukuuFa~k!u2

2b(
a
E

0

L

dxV„x,Fa~x!…J ~13!

gives after averaging over the disorder

Zn5E )
a51

n

d@Fa#exp$2bHn@Fa#%, ~14!

where

Hn5
c

2 E dk

2p (
a

ukuuFa~k!u2

1
bW

2 (
a,b

E
0

L

dx f F S Fa~x!2Fb~x!

D D 2G . ~15!

We note that the expression of the free energy is invar
with respect to a translation of the center of mass of the
FCM51/L*0

LdxF(x)5(1/L)F(k50). We can fix the center
of mass so that there is no integration on thek50 mode. The
partition functionZn cannot be computed directly. Followin
@12#, we perform a variational calculation based on the var
tional Hamiltonian

H05E dk

2p (
a,b51

n

Fa~2k!Gab
21~k!Fb~k!, ~16!

whereG21 is a hierarchical Parisi matrix.
The variational free energy

F5
21

bn
ln Z01

1

n
^Hn2H0&0 ~17!

gives up to a constant term,

F
L

5 lim
n˜0

1

n F21

2b E dk

2p
Tra ln G1

c

2b E dk

2p
uku(

a
Gaa~k!

1
bW

2 (
aÞb

f̂ S Bab

D2 D G , ~18!

where

f̂ ~z!5E
2`

` du

A2p
f ~u2z!e2u2/25A11z21 ~19!

and
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Bab5
1

b E dk

2p
@Gaa~k!1Gbb~k!22Gab~k!#. ~20!

The optimal free energy is obtained for a matrixG verifying
the stationarity conditions]F/]Gab50, which read

Gab
215

22bW

D2 f̂ 8S Bab

D2 D for aÞb,

~21!

(
b

Gab
215cuku.

More details on this approach can be found in@12,16,17#.

B. The replica symmetry breaking solution

To solve Eqs.~21!, we suppose that the matrixG has a
hierarchical replica symmetry breaking structure in the m
ner of Parisi. We can writeGab

215(cuku2s̃)dab2sab . G21

is thus parametrized by a diagonal partcuku2s̃, and a func-
tion s(u) defined on the interval@0,1#. @From Eqs.~21!, we
know that the off-diagonal elements ofG21 do not depend
on k.# The optimization equations forG can then be written
as

s~u!5
2bW

D2 f̂ 8S B~u!

D2 D ~22!

with

B~u!5
2

b E dk

2p
@ g̃~k!2g~k,u!#. ~23!

The solution to these equations is described in Appendix
It is best written in terms of the function

@s#~u!5us~u!2E
0

u

dvs~v ! ~24!

which is given by

@s#~u!5
W

pcD4 S u

uc
D 3/2

for u<uc ,

~25!

@s#~u!5
W

pcD4 for u>uc ,

with

uc.
3T

pcD2 5
T

Tc
.

The expression foruc is given byT/Tc for T small compared
with Tc . From the expression

Gaa~k!5
1

cuku F11E
0

1 du

u2

@s#~u!

@s#~u!1cukuG ~26!

we get forT˜0,
-

.

Ux2x8

D U@1 and Ux2x8

L U!1,

~27!

A^@F~x!2F~x8!#2&5DHS x2x8

j
D ,

where

H2~x!5
4

3 S x

p D 2/3E
0

`

dk
@12cos~k!#

k5/3 E
0

~x/pk!1/3 dw

w311

1
2x

3p E
0

`

dk
@12cos~k!#

k~x/p1k!
~28!

andj5c2D4/W.
The functionH has the following asymptotic behavio

For smallx, H(x).Auxu and for largex, H(x).1.14uxu1/3.
When ux2x8u!j,

A^@F~x!2F~x8!#2&.DUx2x8

j
U1/2

. ~29!

When ux2x8u@j,

A^@F~x!2F~x8!#2&.1.14DUx2x8

j
U1/3

. ~30!

C. A more general form of the disorder

We can show that even in the more general case where
only impose that the correlation function of the potential h
the asymptotic behaviorf (uuu);Auuu for largeuuu, the height
correlation function can be put in the form

A^@F~x!2F~x8!#2&5DGS x2x8

j
D ~31!

in the limit T˜0, and forD!ux2x8u!L. The derivation of
G is given in Appendix B.G depends on a functionh, where
the inverse ofh is given byh21(x)5 f-(x)/ f 9(x).

D. Effect of the cutoff D

On scales comparable toD, there are corrections to Eq
~28!. When we take into account the cutoffD, H is replaced
by

H1
2~x,l!5

4

3 S x

p D 2/3E
0

2plx dk

k5/3@12cos~k!#E
0

~x/pk!1/3 dw

w311

1
2x

3p E
0

2plx dk

k~x/p1k!
@12cos~k!#, ~32!

wherel5j/D. The effect of the cutoff is to shift the theo
retical curve slightly downwards, especially in the region
small x.

E. Effect of gravity

To take into account gravity, we must replace the ker
uku in the Hamiltonian~7! by Ak21m2, with m51/Lc , where
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Lc is the capillary length. Generalizing the previous calcu
tions, we can express@s#(u) in terms of an inverse function
I21. When the Larkin length is sufficiently small compare
with the capillary length, we have in the limit whereT!Tc

@s#~u!50 for u<u1 ,

@s#~u!5mcI21F Lc

pj S u

uc
D 3/2G for u1<u<uc8 , ~33!

@s#~u!5mcI21F Lc

pj S uc8

uc
D 3/2G for u>uc8 ,

with

u15ucS pj

Lc
I~0! D 2/3

and uc.
T

Tc
.

ng
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-As for uc8 , it is slightly larger thanuc and also of order
T/Tc . A more detailed description is provided in Append
C. When the capillary length goes to infinity,u1 tends to-
wards 0 anduc8 towardsuc . The functionI(x) is given by

I~x!5S E
0

` dk

~Aq2111x!2D 2S 2E
0

` dk

~Aq2111x!3D 23/2

~34!

and for largex, I(x).x. This asymptotic behavior ensure
that we do recover the results of Sec. V whenm goes to zero.
The correlation is then given by

A^@F~x!2F~x8!#2&5DHgS x2x8

j
,
pj

Lc
D , ~35!

where
Hg
2~x,l!5

4

3 E0

`

dk
12cos~kx/p!

Ak21l2 E
@lI~0!#1/3

~uc8/uc!1/2 dw

w3

lI21~w3/l!

lI21~w3/l!1Ak21l2

1
2

3

uc

uc8
E

0

`

dk
12cos~kx/p!

Ak21l2

lI21~1/l!

lI21~1/l!1Ak21l2
. ~36!
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The asymptotic behavior ofHg is different from that ofH.
For smallx,

Hg
2~x,l!.xH 2

3 E@lI~0!#1/3

~uc8/uc!1/2

dw
l

w3 I21~w3/l!

1
uc

3uc8
lI21~1/l!J ~37!

and for largex,Hg(x,l) tends towards a constant dependi
on l.

From the previous equations we can see that gravity h
significant effect whenpj/Lc becomes of order 1, wherej is
the Larkin length andLc is the capillary length. Moreover
we can also note that the correction for smalll to the case
without gravity is of orderl1/3. The limit l going to 0 is thus
a rather slow one.

V. COMPARISON WITH EXPERIMENT

A. The experimental setup

We have fitted the data from experiments carried out
Guthmann and Rolley@4# with our theoretical curve. The
experiments study the wetting properties of liquid helium
on caesium below the wetting transition temperature wh
is about 2 K. Above that temperature, caesium is wetted
helium. In the experiments carried out by Guthmann a
Rolley, the substrate consists of caesium deposited on a
mirror which is slightly inclined with respect to the horizon
tal ~see Fig. 1!. The wetted defects are small areas on
substrate where the caesium has been oxydized. The ex
a

y

h
y
d
ld

e
eri-

ments are carried out on a range of temperatures going f
about 1 K to 2 K. There is a constant inflow of helium at th
bottom of the helium reservoir to maintain the contact an
to its maximum valueua , the advancing angle, which is i
general different from the equilibrium contact angleueq ~see
Fig. 1!. This is necessary because otherwise the liquid wo
recede and the contact angle would shrink to zero due
strong hysteresis. Height correlations are calculated fr
snapshots of the advancing line when it is pinned. The
coming helium is regulated to ensure that the line mo
with a small velocity and so we can probably suppose t
we are just at the limit of depinning each time the line
pinned. While the experiments thus involve a line which
moving very slowly, our theory is a static theory which a
sumes equilibrium. It is not cleara priori that it can apply to
the experimental situation, but as we shall see, the qualit
the agreement~together with the lack of more quantitativ
theoretical results on out-of-equilibrium dynamics! justifies
it a posteriori. The predicted order of magnitude ofTc given
by Eq. ~25! is cD25g sin2(ueq)D

2/2. The size of the impuri-
ties can be measured experimentally and is of the order o
mm. We thus expect the correlation length to be a few tim
this size. For temperatures not too close to transition te
perature,ueq;20° andg;1019Km22. This leads to a typical
estimateTc;105 K, in the experimental conditions of@4#.
Therefore,T/Tc is of order 1025 and the system is effec
tively at low temperatures, justifying the low-temperatu
limit in our computations. This effect is due to the fact th
the defects have a range of at most a hundred microme
this had been already pointed out in@7#.
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B. Comparison between experimental data and the theory for
a Gaussian correlation function of the disorder

We consider experimental data for height correlationsH
for temperaturesT51.72, 1.8, 1.9, and 1.93 K. The equilib
rium angleueq, the liquid-vapor interfacial tensiong, and
the ‘‘potential strength’’W depend on the temperature, an
so the various experimental curves corresponda priori to
different values of the Larkin length. Instead, the correlat
lengthD which depends only on the substrate is expected
remain constant. We have thus fitted the experimental cu
to the theoretical prediction~27! and ~35!, with the sameD
but differentj’s.

We proceed as follows. Neglecting gravity, we first min
mize the error function

1

(
j

Nj

(
j 51

4

(
i 51

Nj

@DH~xi /j j !2Hexp~xi !#
2 ~38!

with respect toD and j j for j P@1,4#, where j denotes a
given experimental curve at the temperatureTj , xi are the
experimental points,Nj is the number of points of curvej,
andj j is the correlation length at temperatureTj . This pro-
cedure yieldsD518mm. In Fig. 2, we fit each experimenta
curve on the theoretical curveH. We rescale each exper
mental curve by the corresponding 1/j in thex direction and
by 1/D in the y direction. In the table below, we give th
values ofj j and the ratiosj j /j1 , wherej1 is the correlation
length at the highest temperature, forD.18mm. In Fig. 3,
we rescale the theoretical curve on each of the experime
curves by the correspondongj in thex direction and byD in
the y direction. The axes are inmm.

T ~K! 5 1.72 1.8 1.9 1.93

j ~mm! . 220 145 92 53

j/j1 . 4.1 2.7 1.7 1 ~39!

FIG. 2. We rescale the experimental curves on the theore
curveH for the case without gravity. The circles represent the d
for the temperatureT51.93 K, the diamondsT51.9 K, the tri-
anglesT51.8 K, and the squaresT51.72 K.
n
to
es

tal

The dependence ofj on the temperature is related to the
variations of W, g, and ueq, which are not known well
enough for a detailed comparison. In Fig. 3, we note th
each of the rescaled experimental curve departs from t
theoretical curve after some time. Moreover, we note that th
general tendency is that the experimental curves have
slightly larger curvature than the rescaled theoretical curv
This is an indication that gravity could indeed play a signifi
cant part. Indeed, the effective capillary length in the exper
mental conditions is of the order 2 mm, and experimental
the correlations are measured for distances up to about
mm, which is actually not small compared with the capillary
length.

To check whether gravity does or does not have a signi
cant effect, we have recommenced the previous steps w
Hg instead ofH. The capillary lengthLc can be calculated
for the different temperatures from the experimental me
surements ofg. We now minimize the error function

1

(
j

Nj

(
j 51

4

(
i 51

Nj

@DHg~xi /j j ,pj j /Lc
j !2Hexp~xi !#

2.

~40!

We find very different values for the parameters. In this cas
D.75mm. In the table below, we indicate the values of th
capillary lengths and Larkin lengths for the different tem
peratures,

T ~K! 5 1.72 1.8 1.9 1.93

Lc ~mm! . 1855 1838 1819 1823

j ~mm! . 477 422 362 295. ~41!

In Fig. 4, we fit the experimental curves on the correspon
ing theoretical curveHg(x,l). The fit is clearly better at

al
a

FIG. 3. We have rescaled the theoretical curveH in the absence
of gravity on the experimental curves by the same amountD in the
y direction and by different amountsj in the x direction. On thex
axis, we have represented the distance inmm between two points on
the line, and on they axis the average height difference betwee
them. The circles represent the experimental data. From top to b
tom, we go from 1.93 K, to 1.9 K, 1.8 K, and to 1.72 K.
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largex in this case since we have gotten rid of the system
drift from the theory for large fluctuations.

Since gravity is present in the experiment, it must be
cluded in the analysis. What we find is that, as the len
scales which are probed become comparable to the capi
length, the inclusion of gravity in the analysis modifies qu
a bit the results of the fit. It is not so surprising that t
theory without gravity could give a reasonable fit since
predicted the exponents correctly, but it gave a poor re
for the Larkin length. In general, the correlation length w
depend quite a lot on the precise form of the disorder,
one can expect it to be a few times the size of the impurit
so that our resultD575mm is indeed compatible with the
estimated impurity size in the experiment. A better expe
mental control of the type and size of the impurities wou
be needed in order to really check this point.

VI. DISCUSSION AND PERSPECTIVES

This model for the pinning of a contact line on a diso
dered substrate fits quite well the experimental data but th
are nevertheless a few points that still need to be cleared
instance, we have supposed that the line is in thermal e
librium in order to write the usual partition function, and
the end of the calculation we have taken the temperatur
be zero since, as we can see from the numerical values o
parameters, the problem is actually a zero-temperature p
lem. However, in doing so we retain only the states with
lowest energy. Experimentally the correlations are not m
sured for the ground state of the line but for any state t
can be reached dynamically by the experimental proced
These states could be metastable stable, which does not
essarily have the same statistical properties as the gro
state. But as we have seen from the third fit, the fluctuati
of the line do not go beyond the correlation length. So ev
though we are out of the Larkin regime, the fluctuations
still relatively small and this is perhaps an effect of gravi

FIG. 4. We rescale the theoretical curveHg on the different
experimental curves. The axes are the same as for Fig. 3. The u
curve corresponds to the highest temperature and the lowest c
to the lowest temperature.
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APPENDIX A: COMPUTATION
OF THE FUNCTION †s‡„u…

We give in this appendix some details of the calculati
of the function@s#(u). We have from Sec. IV

s~u!5
2bW

D2 f̂ 8S B~u!

D2 D , ~A1!

where

B~u!5
2

b E dk

2p
@ g̃~k!2g~k,u!# ~A2!

and from@12#

g̃~k!2g~k,u!5
1

u@cuku1@s#~u!#
2E

u

1 dv
v2

1

cuku1@s#~v !
.

~A3!

Differentiating Eq.~A1! gives

s8~u!5
2bW

D4 B8~u! f̂ 9S B~u!

D2 D ~A4!

and replacingB8(u) in Eq. ~A4! by its expression

B8~u!52
2

bpc

s8~u!

@s#~u!
~A5!

leads to

s8~u!50 ~A6!

or

152
4W

pcD4

1

@s#~u!
f̂ 9S B~u!

D2 D .

We expressB(u)/D2 in terms of @s#(u) by inverting the
second equation of Eqs.~A6!. This gives

f̂ 921S 2
pcD4

4W
@s#~u! D5

B~u!

D2 . ~A7!

Differentiating Eq.~A7!, and using expression~A4! to ex-
pressB8(u), and the fact that@s#8(u)5us8(u), we get

f̂-

f̂ 9
S B~u!

D2 D 52
bpcD2

2
u52

3Tc

2T
u, ~A8!

where

f̂ 8~x!5
1

2A11x
. ~A9!

From Eqs.~A8! and ~A9!, we have

per
rve
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B~u!

D2 5211
3T

pcuD2 5211
T

Tc

1

u
. ~A10!

Multiplying both sides of Eq.~A5! by u, and using Eq.
~A10!, we get after integrating overu,

@s#~u!5Au3/2. ~A11!

The breakpointuc , above which the solutions to Eqs.~A10!
and ~A11! are no longer valid, is given by

B~uc!5D2S 211
T

Tc

1

uc
D5

2

3

T

Tc
lnS 11

2pc

D@s#~uc!
D .

~A12!

WhenT/Tc goes to 0,uc.T/Tc . Now sinceB(u) tends to
infinity when u tends to 0, we haves(0)50. For u>uc ,
B(u)5B(uc) and @s#(u)5@s#(uc). To obtain A, we can
differentiate Eq.~A12! and compare the result with the e
pression fors8(u). We find A5(W/pcD4)(1/uc

3/2). For u
>uc , s8(u)50 and so@s#(u)5@s#(uc)5W/pcD4.

APPENDIX B: GENERAL FORM OF THE CORRELATION
FUNCTION FOR ARBITRARY DISORDER

In this appendix we derive the height correlation functi
for a more general form of the functionf appearing in the
correlation function of the disorder~8!. We only impose that
f (uuu);lAuuu for large u, wherel is some constant, suc
that f̂ (u);Auuu. We shall keep the same notations as
Appendix A. In this more general case, Eqs.~A1!, ~A5!, and
~A8! from Appendix A are still valid. We define the functio
h21 for positivex as

h21~x!5
f̂-~x!

f̂ 9~x!
, ~B1!

whereh21(x);23/2x for largex. The asymptotic behavio
of h(y) for small and negativey is then 23/2y. We now
expressB(u) in terms ofh, from Eqs.~A8! and ~B1!. This
gives

B~u!5D2hS 2
pcD2

2T
uD . ~B2!

Differentiating the previous equation~B2! gives

B8~u!52
pcD4

2T
h8S 2

pcD2

2T
uD ~B3!

which can be rewritten as

2T

3Tc

d

du
log@s#~u!5wh8~2w! ~B4!

wherew5(pcD2/2T)u. Integrating Eq.~B4! gives
@s#~u!5@s#~e!expE
3e/2uc

3u/2uc
dwwh8~2w!. ~B5!

For e<u!uc , we can use the asymptotic form ofh in Eq.
~B5!, which then reads

@s#~u!5@s#~e!S u

e D 3/2

. ~B6!

Now for smallu, Eq. ~A4! becomes in this case

s8~u!5
3

2

W

pcD4 S Tc

T D 3/2 1

Au
~B7!

and so for smallu, since@s#(0)50, we get

@s#~u!5
W

pcD4 S u

uc
D 3/2

. ~B8!

A comparison of this last expression with Eq.~B6! gives

@s#~e!5
W

pcD4 S e

uc
D 3/2

. ~B9!

Replacing this last expression in Eq.~B5! and takinge to
zero leads to

@s#~u!5
W

pcD4 S~u!, ~B10!

where

S~u!5S u

uc
D 3/2

expE
0

3u/2uc
dwwS h8~2w!2

3

2w2D .

~B11!

For the sake of simplicity, we will suppose that in this ca
the break-point up to which expression~B11! is valid, is also
uc in the limit of low temperatures. This implicitly require
that h(23/2)50. Then foru>uc ,

S~u!5S~uc!5expE
0

3/2

dwwS h8~2w!2
3

2w2D .

~B12!

When f̂ 8 has the simple form~A9!, h8(2w)53/2w2, and we
recover the expression of@s#(u) derived in Appendix A. In
the limit of low temperatures and forD!ux2x8u!L, the
height correlation function is given by

A^@F~x!2F~x8!#2&5DGS x2x8

j
D ~B13!

with
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G2~x!5
4

3 S x

p D 2/3E
0

`

dk
@12cos~k!#

k5/3 E
0

~x/pk!1/3

dv
1

v31expS 2*0
3v2/2~pk/x!2/3

dwFh8~2w!2
3

2w2G D
1

2x

3p E
0

`

dk
@12cos~k!#

kH x/p1k expF2*0
3/2dwS h8~2w!2

3

2w2D G J . ~B14!
o
,

e-

q

l

re

-

at
APPENDIX C: EFFECT OF GRAVITY FOR GIVEN
DISORDER

In this appendix, we consider a specific case of the dis
der given by Eqs.~8! and ~9!. To take into account gravity
we must replace the kerneluku by Auku21m2, with m
51/Lc , whereLc is the capillary length. The equations d
rived in Appendix A are thus no longer valid. Ifs8(u) is not
zero, then Eq.~A7! of Appendix A becomes

B~u!

D2 5 f̂ 921S 2
pcD4

4W
K„@s#~u!…D , ~C1!

where

K~x!5cmgS x

cm D ~C2!

with

1

g~x!
5E

0

` dk

~Ak2111x!2
. ~C3!

Differentiating Eq.~A2! gives

B8~u!52
2s8~u!

pbc

1

K„@s#~u!…
. ~C4!

Differentiating Eq.~C1!, and using Eqs.~A4! and ~A9!, we
have

11
B~u!

D2 5
T

Tc

1

uK8„@s#~u!…
. ~C5!

Differentiating the previous expression~C5!, and using Eq.
~C4! we can express@s#(u) as

K„@s#~u!…

~K8„@s#~u!…!3/25Au3/2, ~C6!

where A is a constant to be determined. Replacing in E
~A4! B8(u) by its expression~C4! and using Eq.~A9! and
Eq. ~C5! leads to

15
W

pcD4

1

uc
3/2

~uK8„@s#~u!…!3/2

K„@s#~u!…
. ~C7!

Comparing the previous expression with Eq.~C6! gives

A5
W

pcD4

1

uc
3/2. ~C8!
r-

.

To express@s#, it is convenient to introduce the functionI,

I~x!5
g~x!

„g8~x!…3/2, ~C9!

which is strictly positive and increasing.I(0).0.87 and
I(x) goes asx whenx goes to infinity.

The inverse functionI21 is thus defined on the interva
@I(0),`#. Since @s#(u) must be continuous and@s#(0)
50, the function@s# necessarily has a first plateau whe
@s#(u)50 from u50 up to a valueu1 given by

I~0!5
W

pcD4

1

mc S u1

uc
D 3/2

5
Lc

pj S u1

uc
D 3/2

. ~C10!

For u1<u<uc8 , whereuc8 is the new break point to be de
termined,

@s#~u!5cmI21F Lc

pj S u1

uc
D 3/2G . ~C11!

The break-pointuc8 is obtained using Eqs.~C5! and ~A2! is
given by

B~uc8!

D2 5211uc

1

uc8K8„@s#~uc8!…

5
2

3
ucE dk

SAk2111
@s#~uc8!

mc D ~C12!

and whenT goes to zero

uc.uc8K8„@s#~uc8!…5uc8g8S @s#~uc8!

mc D , ~C13!

where

g8~u!52E
0

` dq

~Aq2111u!3 S E0

` dq

~Aq2111u!2D 22

.

~C14!

Sinceg8 is a strictly increasing function, withg8(0)58/p2

and g8(`)51, in the limit of low temperaturesuc<uc8
<uc /g8(0). SinceI(x) is almost linear, we can suppose th
@s#(uc8).W/pcD4(uc8/uc)

3/2 and so Eq.~C13! can be re-
written as
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1

l2/35V2/3g8~V! ~C15!

with

V5
1

l S uc8

uc
D 3/2

and l5
pj

Lc
. ~C16!

We can solve foruc8 perturbatively using the solution withou
gravity. As a first approximation, we can take forl its value
.

y

in the absence of gravity. We can then solve numerically
V and for uc8 . For our experimental data, we get by th
methoduc8.uc . For u>uc8 , @s#(u)5@s#(uc8). The height
correlation function is then given by

A^@F~x!2F~x8!#2&5DHgS x2x8

j
,
pj

Lc
D , ~C17!

where
Hg
2~x,l!5

4

3 E0

`

dk
@12cos~kx/p!#

Ak21l2 E
@lI~0!#1/3

~lV!1/3 dw

w3

lI21~w3/l!

lI21~w3/l!1Ak21l2

1
2

3
~lV!22/3E

0

`

dk
@12cos~kx/p!#

Ak21l2

lI21~1/l!

lI21~1/l!1Ak21l2
. ~C18!
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